

INSTITUTE - UIE

Bachelor of Engineering (Computer Science & Engineering) Subject Name : CALCULUS & VECTOR SPACES Subject Code : 20SMT-175 BE :CSE(All IT branches)

DISCOVER, LEARN, EVPOWER

Introduction to Linear Transformation

Course Outcomes

CO Number	Title	Level
CO1	1) The concept of partial derivatives and its application in real	Remember &
	life situations	Understand
	2) The concept of Multiple Integrals and its applications.	
CO2	The concept of Group theory and its application of analysis to	Remember &
	Engineering problems.	Understand
CO3	The concept of vector spaces in a comprehensive manner.	Remember &
		Understand

• Course prerequisites

- ➢ Basic Knowledge of Sets.
- > Basic Knowledge of **binary operations**.
- → Basic Knowledge of functions.
 - ➢ Basic Knowledge of Matrices.

Topic Outcomes

- Students will able to understand basic concept of linear transformation.
- Students will able to understand basic concept kernel and nullity.
- Students now able to aware with the algebraic operations between linear transformations.

Linear Transformation

Let $f: V \to F$ where V is vector space over the field F such that (i) T(x + y) = T(x) + T(y) for all $x, y \in V$ (ii) $T(\alpha x) = \alpha T(x)$ for all $x \in V$, $\alpha \in F$

The two above conditions can be written as $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in V, \alpha, \beta \in F$

Examples:

- 1) T(x)=0 $\forall x$ (zero transformation)
- 2) T(x)=x $\forall x$ (Identity Linear transformation)

Linear Transformation

Results:

- Let V be a vector space over F. If $(\alpha_1, \alpha_2, ..., \alpha_n)$ is basis of V and W contains with vectors $(\beta_1, \beta_2, ..., \beta_m)$ for $m \ge n$. Then exists unique linear transformation $T: V \longrightarrow W$ such that $T(\alpha_i) = \beta_j, j = 1, 2, ..., n$.
- Let $T: V \to W$ be Linear Transformation. Given vectors $v_1, v_2, \dots, v_n \in V$
- (i) If $v_1, v_2, ..., v_n$ are linearly dependent, then $T(v_1), T(v_2), ..., T(v_n)$ linearly dependent.
- (ii) $T(v_1), T(v_2), ..., T(v_n)$ linearly independent, then $v_1, v_2, ..., v_n$ are linearly independent

Linear Functional

• Let V be a vector space over a field F. A mapping $f: V \to F$ is termed a linear functional if for every $u, v \in V$ and every $a, b \in F$ f(au + bv) = af(u) + bf(v)

Examples:

- 1. Let $f: F^n \to F$ be the ith projection mapping $f_i(a_1, a_2, ..., a_n) = a_i$ then f_i is linear and so it is a linear functional on F^n .
- 2. Let V be the vector space of polynomials in t over R, Let $\phi: V \to R$ be the integral operator defined by $\phi(p(t)) = \int_0^1 p(t) dt$. Since ϕ is linear and hence it is a linear functional on V.

Kernel and Range

• Kernel:

Kernel of homomorphism T contains all those members that are mapped to 0 and it is called the Null space of T.

Ker $T = \{0\}$ iff T is one-one.

• Range:

Range of T is defined to be $\{T(x)|x \in V\} = R_T$

Rank and Nullity

• Rank and Nullity of T:

Let $T: V \to W$ be a L.T. we define Rank of $T = \dim Range T = r(T)$ Nullity of $T = \dim KerT = v(T)$

• Sylvester's Law :

Let $T: V \to W$ be a L.T., then $Rank(T) + Nullity(T) = \dim V$.

Algebra of linear transformations

Linear transformations can be added, and multiplied by scalars. Hence they form a vector space themselves.

- **Theorem:** Let T,U:V→W linear transformation if
 - 1) We define $T+U:V \rightarrow W$ by (T+U)(a)=T(a)+U(a).
 - 2) We define $cT:V \rightarrow W$ by cT(a)=c(T(a)).

Then they are linear transformations.

• Hom(V,W):

Set of all L.T from vector space V to W over F. It is denoted by L(V,W) of Hom(V,W)

• L(V,W) is a vector space.

9

Algebra of linear transformations

Results:

• Let V and W be vector spaces of dimensions m and n over F. Then $\dim L(V,W) = m.n$

10

- If $T_1, T_2 \in Hom(V, W)$ then
- (i) $r(\alpha T_1) = r(T_1) \forall \alpha (\neq 0) \in F$
- (ii) $|r(T_1) r(T_2)| \le r(T_1 + T_2) \le r(T_1) + r(T_2)$

Definition:

 $T: V \to W$ is invertible if there exists $U: W \to V$ is such that UT = Ivand $TU = I_w$. Further, U is denoted by T^{-1} .

Result: If T is linear, then T⁻¹ is linear.

Definition:

 $T: V \to W$ is nonsingular if T(c) = 0 implies c = 0

Result:

T is nonsingular iff *T* carries each linearly independent set to a linearly independent set.

References

Reference Books

- Elements of Discrete Mathematics, (Second Edition) C. L. Liu, McGraw Hill, New Delhi, 2017
- Graph Theory with Applications, J. A. Bondy and U. S. R. Murty, Macmillan Press, London.
- Topics in Algebra, I. N. Herstein, John Wiley and Sons. Digital Logic & amp; Computer Design, M. Morris Mano, Pearson.

Online Video Sites:

- 1. NPTEL
- 2. Coursera
- 3. Unacademy

灓